- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
A regularized recursive linearization method is developed for a two-dimensional inverse medium scattering problem that arises in near-field optics, which reconstructs the scatterer of an inhomogeneous medium deposited on a homogeneous substrate from data accessible through photon scanning tunneling microscopy experiments. In addition to the ill-posedness of the inverse scattering problems, two difficulties arise from the layered background medium and limited aperture data. Based on multiple frequency scattering data, the method starts from the Born approximation corresponding to the weak scattering at a low frequency, each update is obtained via recursive linearization with respect to the wavenumber by solving one forward problem and one adjoint problem of the Helmholtz equation. Numerical experiments are included to illustrate the feasibility of the proposed method.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8691.html} }A regularized recursive linearization method is developed for a two-dimensional inverse medium scattering problem that arises in near-field optics, which reconstructs the scatterer of an inhomogeneous medium deposited on a homogeneous substrate from data accessible through photon scanning tunneling microscopy experiments. In addition to the ill-posedness of the inverse scattering problems, two difficulties arise from the layered background medium and limited aperture data. Based on multiple frequency scattering data, the method starts from the Born approximation corresponding to the weak scattering at a low frequency, each update is obtained via recursive linearization with respect to the wavenumber by solving one forward problem and one adjoint problem of the Helmholtz equation. Numerical experiments are included to illustrate the feasibility of the proposed method.