- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
The stability of the $P_1$-$P_0$ mixed-element is established on general Powell-Sabin triangular grids. The piecewise linear finite element solution approximating the velocity is divergence-free pointwise for the Stokes equations. The finite element solution approximating the pressure in the Stokes equations can be obtained as a byproduct if an iterative method is adopted for solving the discrete linear system of equations. Numerical tests are presented confirming the theory on the stability and the optimal order of convergence for the $P_1$ Powell-Sabin divergence-free finite element method.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8636.html} }The stability of the $P_1$-$P_0$ mixed-element is established on general Powell-Sabin triangular grids. The piecewise linear finite element solution approximating the velocity is divergence-free pointwise for the Stokes equations. The finite element solution approximating the pressure in the Stokes equations can be obtained as a byproduct if an iterative method is adopted for solving the discrete linear system of equations. Numerical tests are presented confirming the theory on the stability and the optimal order of convergence for the $P_1$ Powell-Sabin divergence-free finite element method.