- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
We consider the permeability estimation problem in two-phase porous media flow. We try to identify the permeability field by utilizing both the production data from wells as well as inverted seismic data. The permeability field is assumed to be piecewise constant, or can be approximated well by a piecewise constant function. A variant of the level set method, called Piecewise Constant Level Set Method is used to represent the interfaces between the regions with different permeability levels. The inverse problem is solved by minimizing a functional, and TV norm regularization is used to deal with the ill-posedness. We also use the operator-splitting technique to decompose the constraint term from the fidelity term. This gives us more flexibility to deal with the constraint and helps to stabilize the algorithm.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8631.html} }We consider the permeability estimation problem in two-phase porous media flow. We try to identify the permeability field by utilizing both the production data from wells as well as inverted seismic data. The permeability field is assumed to be piecewise constant, or can be approximated well by a piecewise constant function. A variant of the level set method, called Piecewise Constant Level Set Method is used to represent the interfaces between the regions with different permeability levels. The inverse problem is solved by minimizing a functional, and TV norm regularization is used to deal with the ill-posedness. We also use the operator-splitting technique to decompose the constraint term from the fidelity term. This gives us more flexibility to deal with the constraint and helps to stabilize the algorithm.