- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Three Way Decomposition for the Boltzmann Equation
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-27-184,
author = {Ilgis Ibragimov and Sergej Rjasanow},
title = {Three Way Decomposition for the Boltzmann Equation},
journal = {Journal of Computational Mathematics},
year = {2009},
volume = {27},
number = {2-3},
pages = {184--195},
abstract = {
The initial value problem for the spatially homogeneous Boltzmann equation is considered. A deterministic numerical scheme for this problem is developed by the use of the three way decomposition of the unknown function as well as of the collision integral. On this way, almost linear complexity of the algorithm is achieved. Some numerical examples are presented.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8567.html} }
TY - JOUR
T1 - Three Way Decomposition for the Boltzmann Equation
AU - Ilgis Ibragimov & Sergej Rjasanow
JO - Journal of Computational Mathematics
VL - 2-3
SP - 184
EP - 195
PY - 2009
DA - 2009/04
SN - 27
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/8567.html
KW - Boltzmann equation, Deterministic scheme, Three way decomposition.
AB -
The initial value problem for the spatially homogeneous Boltzmann equation is considered. A deterministic numerical scheme for this problem is developed by the use of the three way decomposition of the unknown function as well as of the collision integral. On this way, almost linear complexity of the algorithm is achieved. Some numerical examples are presented.
Ilgis Ibragimov and Sergej Rjasanow. (2009). Three Way Decomposition for the Boltzmann Equation.
Journal of Computational Mathematics. 27 (2-3).
184-195.
doi:
Copy to clipboard