- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
It is well understood that a good way to discretize a pointwise length constraint in partial differential equations or variational problems is to impose it at the nodes of a triangulation that defines a lowest order finite element space. This article pursues this approach and discusses the iterative solution of the resulting discrete nonlinear system of equations for a simple model problem which defines harmonic maps into spheres. An iterative scheme that is globally convergent and energy decreasing is combined with a locally rapidly convergent approximation scheme. An explicit example proves that the local approach alone may lead to ill-posed problems; numerical experiments show that it may diverge or lead to highly irregular solutions with large energy if the starting value is not chosen carefully. The combination of the global and local method defines a reliable algorithm that performs very efficiently in practice and provides numerical approximations with low energy.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8566.html} }It is well understood that a good way to discretize a pointwise length constraint in partial differential equations or variational problems is to impose it at the nodes of a triangulation that defines a lowest order finite element space. This article pursues this approach and discusses the iterative solution of the resulting discrete nonlinear system of equations for a simple model problem which defines harmonic maps into spheres. An iterative scheme that is globally convergent and energy decreasing is combined with a locally rapidly convergent approximation scheme. An explicit example proves that the local approach alone may lead to ill-posed problems; numerical experiments show that it may diverge or lead to highly irregular solutions with large energy if the starting value is not chosen carefully. The combination of the global and local method defines a reliable algorithm that performs very efficiently in practice and provides numerical approximations with low energy.