- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
The numerical approximation of the Spectral-Lagrangian scheme developed by the authors in [30] for a wide range of homogeneous non-linear Boltzmann type equations is extended to the space inhomogeneous case and several shock problems are benchmark. Recognizing that the Boltzmann equation is an important tool in the analysis of formation of shock and boundary layer structures, we present the computational algorithm in Section 3.3 and perform a numerical study case in shock tube geometries well modeled in for $1D$ in $\textbf{x}$ times $3D$ in $\textbf{v}$ in Section 4. The classic Riemann problem is numerically analyzed for Knudsen numbers close to continuum. The shock tube problem of Aoki et al [2], where the wall temperature is suddenly increased or decreased, is also studied. We consider the problem of heat transfer between two parallel plates with diffusive boundary conditions for a range of Knudsen numbers from close to continuum to a highly rarefied state. Finally, the classical infinite shock tube problem that generates a non-moving shock wave is studied. The point worth noting in this example is that the flow in the final case turns from a supersonic flow to a subsonic flow across the shock.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1003-m0011}, url = {http://global-sci.org/intro/article_detail/jcm/8531.html} }The numerical approximation of the Spectral-Lagrangian scheme developed by the authors in [30] for a wide range of homogeneous non-linear Boltzmann type equations is extended to the space inhomogeneous case and several shock problems are benchmark. Recognizing that the Boltzmann equation is an important tool in the analysis of formation of shock and boundary layer structures, we present the computational algorithm in Section 3.3 and perform a numerical study case in shock tube geometries well modeled in for $1D$ in $\textbf{x}$ times $3D$ in $\textbf{v}$ in Section 4. The classic Riemann problem is numerically analyzed for Knudsen numbers close to continuum. The shock tube problem of Aoki et al [2], where the wall temperature is suddenly increased or decreased, is also studied. We consider the problem of heat transfer between two parallel plates with diffusive boundary conditions for a range of Knudsen numbers from close to continuum to a highly rarefied state. Finally, the classical infinite shock tube problem that generates a non-moving shock wave is studied. The point worth noting in this example is that the flow in the final case turns from a supersonic flow to a subsonic flow across the shock.