- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this work we consider the Reduced Basis method for the solution of parametrized advection-reaction partial differential equations. For the generation of the basis we adopt a stabilized finite element method and we define the Reduced Basis method in the "primal-dual" formulation for this stabilized problem. We provide a priori Reduced Basis error estimates and we discuss the effects of the finite element approximation on the Reduced Basis error. We propose an adaptive algorithm, based on the a posteriori Reduced Basis error estimate, for the selection of the sample sets upon which the basis are built; the idea leading this algorithm is the minimization of the computational costs associated with the solution of the Reduced Basis problem. Numerical tests demonstrate the efficiency, in terms of computational costs, of the "primal-dual" Reduced Basis approach with respect to an "only primal" one.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2009.09-m3015}, url = {http://global-sci.org/intro/article_detail/jcm/8511.html} }In this work we consider the Reduced Basis method for the solution of parametrized advection-reaction partial differential equations. For the generation of the basis we adopt a stabilized finite element method and we define the Reduced Basis method in the "primal-dual" formulation for this stabilized problem. We provide a priori Reduced Basis error estimates and we discuss the effects of the finite element approximation on the Reduced Basis error. We propose an adaptive algorithm, based on the a posteriori Reduced Basis error estimate, for the selection of the sample sets upon which the basis are built; the idea leading this algorithm is the minimization of the computational costs associated with the solution of the Reduced Basis problem. Numerical tests demonstrate the efficiency, in terms of computational costs, of the "primal-dual" Reduced Basis approach with respect to an "only primal" one.