- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, we present the theory and numerical implementation for a 2-D thermal inhomogeneity through the dynamical probe method. The main idea of the dynamical probe method is to construct an indicator function associated with some probe such that when the probe touch the boundary of the inclusion the indicator function will blow up. From this property, we can get the shape of the inclusion. We will give the numerical reconstruction algorithm to identify the inclusion from the simulated Neumann-to-Dirichlet map.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2009.09-m2935}, url = {http://global-sci.org/intro/article_detail/jcm/8509.html} }In this paper, we present the theory and numerical implementation for a 2-D thermal inhomogeneity through the dynamical probe method. The main idea of the dynamical probe method is to construct an indicator function associated with some probe such that when the probe touch the boundary of the inclusion the indicator function will blow up. From this property, we can get the shape of the inclusion. We will give the numerical reconstruction algorithm to identify the inclusion from the simulated Neumann-to-Dirichlet map.