- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper we design and analyze a class of high order numerical methods to two dimensional Heaviside function integrals. Inspired by our high order numerical methods to two dimensional delta function integrals [19], the methods comprise approximating the mesh cell restrictions of the Heaviside function integral. In each mesh cell the two dimensional Heaviside function integral can be rewritten as a one dimensional ordinary integral with the integrand being a one dimensional Heaviside function integral which is smooth on several subsets of the integral interval. Thus the two dimensional Heaviside function integral is approximated by applying standard one dimensional high order numerical quadratures and high order numerical methods to one dimensional Heaviside function integrals. We establish error estimates for the method which show that the method can achieve any desired accuracy by assigning the corresponding accuracy to the sub-algorithms. Numerical examples are presented showing that the second- to fourth-order methods implemented in this paper achieve or exceed the expected accuracy.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1010-m3285}, url = {http://global-sci.org/intro/article_detail/jcm/8480.html} }In this paper we design and analyze a class of high order numerical methods to two dimensional Heaviside function integrals. Inspired by our high order numerical methods to two dimensional delta function integrals [19], the methods comprise approximating the mesh cell restrictions of the Heaviside function integral. In each mesh cell the two dimensional Heaviside function integral can be rewritten as a one dimensional ordinary integral with the integrand being a one dimensional Heaviside function integral which is smooth on several subsets of the integral interval. Thus the two dimensional Heaviside function integral is approximated by applying standard one dimensional high order numerical quadratures and high order numerical methods to one dimensional Heaviside function integrals. We establish error estimates for the method which show that the method can achieve any desired accuracy by assigning the corresponding accuracy to the sub-algorithms. Numerical examples are presented showing that the second- to fourth-order methods implemented in this paper achieve or exceed the expected accuracy.