- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, we present a meshless Galerkin scheme of boundary integral equations (BIEs), known as the Galerkin boundary node method (GBNM), for two-dimensional exterior Neumann problems that combines the moving least-squares (MLS) approximations and a variational formulation of BIEs. In this approach, boundary conditions can be implemented directly despite the MLS approximations lack the delta function property. Besides, the GBNM keeps the symmetry and positive definiteness of the variational problems. A rigorous error analysis and convergence study of the method is presented in Sobolev spaces. Numerical examples are also given to illustrate the capability of the method.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1010-m3069}, url = {http://global-sci.org/intro/article_detail/jcm/8477.html} }In this paper, we present a meshless Galerkin scheme of boundary integral equations (BIEs), known as the Galerkin boundary node method (GBNM), for two-dimensional exterior Neumann problems that combines the moving least-squares (MLS) approximations and a variational formulation of BIEs. In this approach, boundary conditions can be implemented directly despite the MLS approximations lack the delta function property. Besides, the GBNM keeps the symmetry and positive definiteness of the variational problems. A rigorous error analysis and convergence study of the method is presented in Sobolev spaces. Numerical examples are also given to illustrate the capability of the method.