- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
The wave scattering problem by a crack $\Gamma$ in $\mathbb{R}^2$ with impedance type boundary is considered. This problem models the diffraction of waves by thin two-sided cylindrical screens. A numerical method for solving the problem is developed. The solution of the problem is represented in the form of the combined angular potential and single-layer potential. The linear integral equations satisfied by the density functions are derived for general parameterized arcs. The weakly singular integrals and the Cauchy singular integral arising in these equations are computed using a highly accurate scheme with a truncation error analysis. The advantage of the scheme proposed in this paper is, in one hand, the fact that we do not need the analyticity property of the crack and we allow different complex valued surface impedances in both sides of the crack. In the other hand, we avoid the hyper-singular integrals. Numerical implementations showing the validity of the scheme are presented.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1006-m3131}, url = {http://global-sci.org/intro/article_detail/jcm/8470.html} }The wave scattering problem by a crack $\Gamma$ in $\mathbb{R}^2$ with impedance type boundary is considered. This problem models the diffraction of waves by thin two-sided cylindrical screens. A numerical method for solving the problem is developed. The solution of the problem is represented in the form of the combined angular potential and single-layer potential. The linear integral equations satisfied by the density functions are derived for general parameterized arcs. The weakly singular integrals and the Cauchy singular integral arising in these equations are computed using a highly accurate scheme with a truncation error analysis. The advantage of the scheme proposed in this paper is, in one hand, the fact that we do not need the analyticity property of the crack and we allow different complex valued surface impedances in both sides of the crack. In the other hand, we avoid the hyper-singular integrals. Numerical implementations showing the validity of the scheme are presented.