- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
On Matrix and Determinant Identities for Composite Functions
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-29-16,
author = {Xinghua Wang and Aimin Xu},
title = {On Matrix and Determinant Identities for Composite Functions},
journal = {Journal of Computational Mathematics},
year = {2011},
volume = {29},
number = {1},
pages = {16--25},
abstract = {
We present some matrix and determinant identities for the divided differences of the composite functions, which generalize the divided difference form of Faà di Bruno's formula. Some recent published identities can be regarded as special cases of our results.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1007-m3067}, url = {http://global-sci.org/intro/article_detail/jcm/8461.html} }
TY - JOUR
T1 - On Matrix and Determinant Identities for Composite Functions
AU - Xinghua Wang & Aimin Xu
JO - Journal of Computational Mathematics
VL - 1
SP - 16
EP - 25
PY - 2011
DA - 2011/02
SN - 29
DO - http://doi.org/10.4208/jcm.1007-m3067
UR - https://global-sci.org/intro/article_detail/jcm/8461.html
KW - Bell polynomial, Composite function, Determinant identity, Divided difference,
Matrix identity.
AB -
We present some matrix and determinant identities for the divided differences of the composite functions, which generalize the divided difference form of Faà di Bruno's formula. Some recent published identities can be regarded as special cases of our results.
Xinghua Wang and Aimin Xu. (2011). On Matrix and Determinant Identities for Composite Functions.
Journal of Computational Mathematics. 29 (1).
16-25.
doi:10.4208/jcm.1007-m3067
Copy to clipboard