- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
We construct a new stabilized finite volume method on rectangular grids for the Stokes equations. The lowest equal-order conforming finite element pair (piecewise bilinear velocities and pressures) and piecewise constant test spaces for both the velocity and pressure are employed in this method. We show the stability of this method and prove first optimal rate of convergence for the velocity in the $H^1$ norm and the pressure in the $L^2$ norm. In addition, a second order optimal error estimate for the velocity in the $L^2$ norm is derived. Numerical experiments illustrating the theoretical results are included.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1206-m3843}, url = {http://global-sci.org/intro/article_detail/jcm/8455.html} }We construct a new stabilized finite volume method on rectangular grids for the Stokes equations. The lowest equal-order conforming finite element pair (piecewise bilinear velocities and pressures) and piecewise constant test spaces for both the velocity and pressure are employed in this method. We show the stability of this method and prove first optimal rate of convergence for the velocity in the $H^1$ norm and the pressure in the $L^2$ norm. In addition, a second order optimal error estimate for the velocity in the $L^2$ norm is derived. Numerical experiments illustrating the theoretical results are included.