- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
We propose a new reconstruction scheme for the backward heat conduction problem. By using the eigenfunction expansions, this ill-posed problem is solved by an optimization problem, which is essentially a regularizing scheme for the noisy input data with both the number of truncation terms and the approximation accuracy for the final data as multiple regularizing parameters. The convergence rate analysis depending on the strategy of choosing regularizing parameters as well as the computational accuracy of eigenfunctions is given. Numerical implementations are presented to show the validity of this new scheme.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1111-m3457}, url = {http://global-sci.org/intro/article_detail/jcm/8440.html} }We propose a new reconstruction scheme for the backward heat conduction problem. By using the eigenfunction expansions, this ill-posed problem is solved by an optimization problem, which is essentially a regularizing scheme for the noisy input data with both the number of truncation terms and the approximation accuracy for the final data as multiple regularizing parameters. The convergence rate analysis depending on the strategy of choosing regularizing parameters as well as the computational accuracy of eigenfunctions is given. Numerical implementations are presented to show the validity of this new scheme.