- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
J. Comp. Math., 30 (2012), pp. 177-196.
Published online: 2012-04
[An open-access article; the PDF is free to any online user.]
Cited by
- BibTex
- RIS
- TXT
The total variation (TV) minimization problem is widely studied in image restoration. Although many alternative methods have been proposed for its solution, the Newton method remains not usable for the primal formulation due to no convergence. A previous study by Chan, Zhou and Chan [15] considered a regularization parameter continuation idea to increase the domain of convergence of the Newton method with some success but no robust parameter selection schemes. In this paper, we consider a homotopy method for the same primal TV formulation and propose to use curve tracking to select the regularization parameter adaptively. It turns out that this idea helps to improve substantially the previous work in efficiently solving the TV Euler-Lagrange equation. The same idea is also considered for the two other methods as well as the deblurring problem, again with improvements obtained. Numerical experiments show that our new methods are robust and fast for image restoration, even for images with large noisy-to-signal ratio.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1107-m3423}, url = {http://global-sci.org/intro/article_detail/jcm/8424.html} }The total variation (TV) minimization problem is widely studied in image restoration. Although many alternative methods have been proposed for its solution, the Newton method remains not usable for the primal formulation due to no convergence. A previous study by Chan, Zhou and Chan [15] considered a regularization parameter continuation idea to increase the domain of convergence of the Newton method with some success but no robust parameter selection schemes. In this paper, we consider a homotopy method for the same primal TV formulation and propose to use curve tracking to select the regularization parameter adaptively. It turns out that this idea helps to improve substantially the previous work in efficiently solving the TV Euler-Lagrange equation. The same idea is also considered for the two other methods as well as the deblurring problem, again with improvements obtained. Numerical experiments show that our new methods are robust and fast for image restoration, even for images with large noisy-to-signal ratio.