- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this work, we focus on designing efficient numerical schemes to approximate a thermodynamically consistent Navier-Stokes/Cahn-Hilliard problem given in [3] modeling the mixture of two incompressible fluids with different densities. The model is based on a diffuse-interface phase-field approach that is able to describe topological transitions like droplet coalescence or droplet break-up in a natural way. We present a splitting scheme, decoupling computations of the Navier-Stokes part from the Cahn-Hilliard one, which is unconditionally energy-stable up to the choice of the potential approximation. Some numerical experiments are carried out to validate the correctness and the accuracy of the scheme, and to study the sensitivity of the scheme with respect to different physical parameters.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1405-m4410}, url = {http://global-sci.org/intro/article_detail/jcm/8407.html} }In this work, we focus on designing efficient numerical schemes to approximate a thermodynamically consistent Navier-Stokes/Cahn-Hilliard problem given in [3] modeling the mixture of two incompressible fluids with different densities. The model is based on a diffuse-interface phase-field approach that is able to describe topological transitions like droplet coalescence or droplet break-up in a natural way. We present a splitting scheme, decoupling computations of the Navier-Stokes part from the Cahn-Hilliard one, which is unconditionally energy-stable up to the choice of the potential approximation. Some numerical experiments are carried out to validate the correctness and the accuracy of the scheme, and to study the sensitivity of the scheme with respect to different physical parameters.