- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
This paper presents three regularized models for the logarithmic Klein-Gordon equation. By using a modified Crank-Nicolson method in time and the Galerkin finite element method (FEM) in space, a fully implicit energy-conservative numerical scheme is constructed for the local energy regularized model that is regarded as the best one among the three regularized models. Then, the cut-off function technique and the time-space error splitting technique are innovatively combined to rigorously analyze the unconditionally optimal and high-accuracy convergence results of the numerical scheme without any coupling condition between the temporal step size and the spatial mesh width. The theoretical framework is uniform for the other two regularized models. Finally, numerical experiments are provided to verify our theoretical results. The analytical techniques in this work are not limited in the FEM, and can be directly extended into other numerical methods. More importantly, this work closes the gap for the unconditional error/stability analysis of the numerical methods for the logarithmic systems in higher dimensional spaces.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2312-m2023-0185}, url = {http://global-sci.org/intro/article_detail/jcm/23553.html} }This paper presents three regularized models for the logarithmic Klein-Gordon equation. By using a modified Crank-Nicolson method in time and the Galerkin finite element method (FEM) in space, a fully implicit energy-conservative numerical scheme is constructed for the local energy regularized model that is regarded as the best one among the three regularized models. Then, the cut-off function technique and the time-space error splitting technique are innovatively combined to rigorously analyze the unconditionally optimal and high-accuracy convergence results of the numerical scheme without any coupling condition between the temporal step size and the spatial mesh width. The theoretical framework is uniform for the other two regularized models. Finally, numerical experiments are provided to verify our theoretical results. The analytical techniques in this work are not limited in the FEM, and can be directly extended into other numerical methods. More importantly, this work closes the gap for the unconditional error/stability analysis of the numerical methods for the logarithmic systems in higher dimensional spaces.