- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Fractional Klein-Kramers equation can well describe subdiffusion in phase space. In this paper, we develop the fully discrete scheme for time-fractional Klein-Kramers equation based on the backward Euler convolution quadrature and local discontinuous Galerkin methods. Thanks to the obtained sharp regularity estimates in temporal and spatial directions after overcoming the hypocoercivity of the operator, the complete error analyses of the fully discrete scheme are built. It is worth mentioning that the convergence of the provided scheme is independent of the temporal regularity of the exact solution. Finally, numerical results are proposed to verify the correctness of the theoretical results.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2206-m2022-0054}, url = {http://global-sci.org/intro/article_detail/jcm/23538.html} }Fractional Klein-Kramers equation can well describe subdiffusion in phase space. In this paper, we develop the fully discrete scheme for time-fractional Klein-Kramers equation based on the backward Euler convolution quadrature and local discontinuous Galerkin methods. Thanks to the obtained sharp regularity estimates in temporal and spatial directions after overcoming the hypocoercivity of the operator, the complete error analyses of the fully discrete scheme are built. It is worth mentioning that the convergence of the provided scheme is independent of the temporal regularity of the exact solution. Finally, numerical results are proposed to verify the correctness of the theoretical results.