- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, a robust residual-based a posteriori estimate is discussed for the Streamline Upwind/Petrov Galerkin (SUPG) virtual element method (VEM) discretization of convection dominated diffusion equation. A global upper bound and a local lower bound for the a posteriori error estimates are derived in the natural SUPG norm, where the global upper estimate relies on some hypotheses about the interpolation errors and SUPG virtual element discretization errors. Based on the Dörfler’s marking strategy, adaptive VEM algorithm drived by the error estimators is used to solve the problem on general polygonal meshes. Numerical experiments show the robustness of the a posteriori error estimates.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2309-m2021-0366}, url = {http://global-sci.org/intro/article_detail/jcm/23534.html} }In this paper, a robust residual-based a posteriori estimate is discussed for the Streamline Upwind/Petrov Galerkin (SUPG) virtual element method (VEM) discretization of convection dominated diffusion equation. A global upper bound and a local lower bound for the a posteriori error estimates are derived in the natural SUPG norm, where the global upper estimate relies on some hypotheses about the interpolation errors and SUPG virtual element discretization errors. Based on the Dörfler’s marking strategy, adaptive VEM algorithm drived by the error estimators is used to solve the problem on general polygonal meshes. Numerical experiments show the robustness of the a posteriori error estimates.