- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Given the measurement matrix $A$ and the observation signal $y,$ the central purpose of compressed sensing is to find the most sparse solution of the underdetermined linear system $y = Ax+z,$ where $x$ is the $s$-sparse signal to be recovered and $z$ is the noise vector. Zhou and Yu [Front. Appl. Math. Stat., 5 (2019), Article 14] recently proposed a novel non-convex weighted $ℓ_r−ℓ_1$ minimization method for effective sparse recovery. In this paper, under newly coherence-based conditions, we study the non-convex weighted $ℓ_r −ℓ_1$ minimization in reconstructing sparse signals that are contaminated by different noises. Concretely, the results reveal that if the coherence $\mu$ of measurement matrix $A$ fulfills $$\mu < \kappa (s; r, α, N), s > 1, α^{\frac{1}{r}} N^{\frac{1}{2}} < 1,$$ then any $s$-sparse signals in the noisy scenarios could be ensured to be reconstructed robustly by solving weighted $ℓ_r − ℓ_1$ minimization non-convex optimization problem. Furthermore, some central remarks are presented to clear that the reconstruction assurance is much weaker than the existing ones. To the best of our knowledge, this is the first mutual coherence-based sufficient condition for such approach.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2307-m2022-0225}, url = {http://global-sci.org/intro/article_detail/jcm/23529.html} }Given the measurement matrix $A$ and the observation signal $y,$ the central purpose of compressed sensing is to find the most sparse solution of the underdetermined linear system $y = Ax+z,$ where $x$ is the $s$-sparse signal to be recovered and $z$ is the noise vector. Zhou and Yu [Front. Appl. Math. Stat., 5 (2019), Article 14] recently proposed a novel non-convex weighted $ℓ_r−ℓ_1$ minimization method for effective sparse recovery. In this paper, under newly coherence-based conditions, we study the non-convex weighted $ℓ_r −ℓ_1$ minimization in reconstructing sparse signals that are contaminated by different noises. Concretely, the results reveal that if the coherence $\mu$ of measurement matrix $A$ fulfills $$\mu < \kappa (s; r, α, N), s > 1, α^{\frac{1}{r}} N^{\frac{1}{2}} < 1,$$ then any $s$-sparse signals in the noisy scenarios could be ensured to be reconstructed robustly by solving weighted $ℓ_r − ℓ_1$ minimization non-convex optimization problem. Furthermore, some central remarks are presented to clear that the reconstruction assurance is much weaker than the existing ones. To the best of our knowledge, this is the first mutual coherence-based sufficient condition for such approach.