- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
The aim of this paper is to develop a fast multigrid solver for interpolation-free finite volume (FV) discretization of anisotropic elliptic interface problems on general bounded domains that can be described as a union of blocks. We assume that the curved interface falls exactly on the boundaries of blocks. The transfinite interpolation technique is applied to generate block-wise distorted quadrilateral meshes, which can resolve the interface with fine geometric details. By an extensive study of the harmonic average point method, an interpolation-free nine-point FV scheme is then derived on such multi-block grids for anisotropic elliptic interface problems with non-homogeneous jump conditions. Moreover, for the resulting linear algebraic systems from cell-centered FV discretization, a high-order prolongation operator based fast cascadic multigrid solver is developed and shown to be robust with respect to both the problem size and the jump of the diffusion coefficients. Various non-trivial examples including four interface problems and an elliptic problem in complex domain without interface, all with tens of millions of unknowns, are provided to show that the proposed multigrid solver is dozens of times faster than the classical algebraic multigrid method as implemented in the code AMG1R5 by Stüben.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2308-m2023-0029}, url = {http://global-sci.org/intro/article_detail/jcm/23528.html} }The aim of this paper is to develop a fast multigrid solver for interpolation-free finite volume (FV) discretization of anisotropic elliptic interface problems on general bounded domains that can be described as a union of blocks. We assume that the curved interface falls exactly on the boundaries of blocks. The transfinite interpolation technique is applied to generate block-wise distorted quadrilateral meshes, which can resolve the interface with fine geometric details. By an extensive study of the harmonic average point method, an interpolation-free nine-point FV scheme is then derived on such multi-block grids for anisotropic elliptic interface problems with non-homogeneous jump conditions. Moreover, for the resulting linear algebraic systems from cell-centered FV discretization, a high-order prolongation operator based fast cascadic multigrid solver is developed and shown to be robust with respect to both the problem size and the jump of the diffusion coefficients. Various non-trivial examples including four interface problems and an elliptic problem in complex domain without interface, all with tens of millions of unknowns, are provided to show that the proposed multigrid solver is dozens of times faster than the classical algebraic multigrid method as implemented in the code AMG1R5 by Stüben.