- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
We develop a stabilizer free weak Galerkin (SFWG) finite element method for Brinkman equations. The main idea is to use high order polynomials to compute the discrete weak gradient and then the stabilizing term is removed from the numerical formulation. The SFWG scheme is very simple and easy to implement on polygonal meshes. We prove the well-posedness of the scheme and derive optimal order error estimates in energy and $L^2$ norm. The error results are independent of the permeability tensor, hence the SFWG method is stable and accurate for both the Stokes and Darcy dominated problems. Finally, we present some numerical experiments to verify the efficiency and stability of the SFWG method.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2307-m2022-0264}, url = {http://global-sci.org/intro/article_detail/jcm/23527.html} }We develop a stabilizer free weak Galerkin (SFWG) finite element method for Brinkman equations. The main idea is to use high order polynomials to compute the discrete weak gradient and then the stabilizing term is removed from the numerical formulation. The SFWG scheme is very simple and easy to implement on polygonal meshes. We prove the well-posedness of the scheme and derive optimal order error estimates in energy and $L^2$ norm. The error results are independent of the permeability tensor, hence the SFWG method is stable and accurate for both the Stokes and Darcy dominated problems. Finally, we present some numerical experiments to verify the efficiency and stability of the SFWG method.