- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
J. Comp. Math., 42 (2024), pp. 1714-1742.
Published online: 2024-11
Cited by
- BibTex
- RIS
- TXT
In this paper, we introduce a type of tensor neural network. For the first time, we propose its numerical integration scheme and prove the computational complexity to be the polynomial scale of the dimension. Based on the tensor product structure, we develop an efficient numerical integration method by using fixed quadrature points for the functions of the tensor neural network. The corresponding machine learning method is also introduced for solving high-dimensional problems. Some numerical examples are also provided to validate the theoretical results and the numerical algorithm.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2307-m2022-0233}, url = {http://global-sci.org/intro/article_detail/jcm/23513.html} }In this paper, we introduce a type of tensor neural network. For the first time, we propose its numerical integration scheme and prove the computational complexity to be the polynomial scale of the dimension. Based on the tensor product structure, we develop an efficient numerical integration method by using fixed quadrature points for the functions of the tensor neural network. The corresponding machine learning method is also introduced for solving high-dimensional problems. Some numerical examples are also provided to validate the theoretical results and the numerical algorithm.