- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
J. Comp. Math., 42 (2024), pp. 1688-1713.
Published online: 2024-11
Cited by
- BibTex
- RIS
- TXT
In this paper, we investigate the theoretical and numerical analysis of the stochastic Volterra integro-differential equations (SVIDEs) driven by Lévy noise. The existence, uniqueness, boundedness and mean square exponential stability of the analytic solutions for SVIDEs driven by Lévy noise are considered. The split-step theta method of SVIDEs driven by Lévy noise is proposed. The boundedness of the numerical solution and strong convergence are proved. Moreover, its mean square exponential stability is obtained. Some numerical examples are given to support the theoretical results.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2307-m2022-0194}, url = {http://global-sci.org/intro/article_detail/jcm/23512.html} }In this paper, we investigate the theoretical and numerical analysis of the stochastic Volterra integro-differential equations (SVIDEs) driven by Lévy noise. The existence, uniqueness, boundedness and mean square exponential stability of the analytic solutions for SVIDEs driven by Lévy noise are considered. The split-step theta method of SVIDEs driven by Lévy noise is proposed. The boundedness of the numerical solution and strong convergence are proved. Moreover, its mean square exponential stability is obtained. Some numerical examples are given to support the theoretical results.