- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
J. Comp. Math., 42 (2024), pp. 1656-1687.
Published online: 2024-11
Cited by
- BibTex
- RIS
- TXT
Classical quasi-Newton methods are widely used to solve nonlinear problems in which the first-order information is exact. In some practical problems, we can only obtain approximate values of the objective function and its gradient. It is necessary to design optimization algorithms that can utilize inexact first-order information. In this paper, we propose an adaptive regularized quasi-Newton method to solve such problems. Under some mild conditions, we prove the global convergence and establish the convergence rate of the adaptive regularized quasi-Newton method. Detailed implementations of our method, including the subspace technique to reduce the amount of computation, are presented. Encouraging numerical results demonstrate that the adaptive regularized quasi-Newton method is a promising method, which can utilize the inexact first-order information effectively.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2306-m2022-0279}, url = {http://global-sci.org/intro/article_detail/jcm/23511.html} }Classical quasi-Newton methods are widely used to solve nonlinear problems in which the first-order information is exact. In some practical problems, we can only obtain approximate values of the objective function and its gradient. It is necessary to design optimization algorithms that can utilize inexact first-order information. In this paper, we propose an adaptive regularized quasi-Newton method to solve such problems. Under some mild conditions, we prove the global convergence and establish the convergence rate of the adaptive regularized quasi-Newton method. Detailed implementations of our method, including the subspace technique to reduce the amount of computation, are presented. Encouraging numerical results demonstrate that the adaptive regularized quasi-Newton method is a promising method, which can utilize the inexact first-order information effectively.