- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
J. Comp. Math., 42 (2024), pp. 1356-1379.
Published online: 2024-07
Cited by
- BibTex
- RIS
- TXT
In this paper, we propose a numerical method for turning point problems in one dimension based on Petrov-Galerkin finite element method (PGFEM). We first give a priori estimate for the turning point problem with a single boundary turning point. Then we use PGFEM to solve it, where test functions are the solutions to piecewise approximate dual problems. We prove that our method has a first-order convergence rate in both $L^∞_h$ norm and a discrete energy norm when we select the exact solutions to dual problems as test functions. Numerical results show that our scheme is efficient for turning point problems with different types of singularities, and the convergency coincides with our theoretical results.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2305-m2022-0171}, url = {http://global-sci.org/intro/article_detail/jcm/23281.html} }In this paper, we propose a numerical method for turning point problems in one dimension based on Petrov-Galerkin finite element method (PGFEM). We first give a priori estimate for the turning point problem with a single boundary turning point. Then we use PGFEM to solve it, where test functions are the solutions to piecewise approximate dual problems. We prove that our method has a first-order convergence rate in both $L^∞_h$ norm and a discrete energy norm when we select the exact solutions to dual problems as test functions. Numerical results show that our scheme is efficient for turning point problems with different types of singularities, and the convergency coincides with our theoretical results.