- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
J. Comp. Math., 42 (2024), pp. 1080-1108.
Published online: 2024-04
Cited by
- BibTex
- RIS
- TXT
Low-dose computed tomography (LDCT) contains the mixed noise of Poisson and Gaussian, which makes the image reconstruction a challenging task. In order to describe the statistical characteristics of the mixed noise, we adopt the sinogram preprocessing as a standard maximum a posteriori (MAP). Based on the fact that the sinogram of LDCT has nonlocal self-similarity property, it exhibits low-rank characteristics. The conventional way of solving the low-rank problem is implemented in matrix forms, and ignores the correlations among similar patch groups. To avoid this issue, we make use of a nonlocal Kronecker-Basis-Representation (KBR) method to depict the low-rank problem. A new denoising model, which consists of the sinogram preprocessing for data fidelity and the nonlocal KBR term, is developed in this work. The proposed denoising model can better illustrate the generative mechanism of the mixed noise and the prior knowledge of the LDCT. Numerical results show that the proposed denoising model outperforms the state-of-the-art algorithms in terms of peak-signal-to-noise ratio (PSNR), feature similarity (FSIM), and normalized mean square error (NMSE).
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2301-m2022-0091}, url = {http://global-sci.org/intro/article_detail/jcm/23047.html} }Low-dose computed tomography (LDCT) contains the mixed noise of Poisson and Gaussian, which makes the image reconstruction a challenging task. In order to describe the statistical characteristics of the mixed noise, we adopt the sinogram preprocessing as a standard maximum a posteriori (MAP). Based on the fact that the sinogram of LDCT has nonlocal self-similarity property, it exhibits low-rank characteristics. The conventional way of solving the low-rank problem is implemented in matrix forms, and ignores the correlations among similar patch groups. To avoid this issue, we make use of a nonlocal Kronecker-Basis-Representation (KBR) method to depict the low-rank problem. A new denoising model, which consists of the sinogram preprocessing for data fidelity and the nonlocal KBR term, is developed in this work. The proposed denoising model can better illustrate the generative mechanism of the mixed noise and the prior knowledge of the LDCT. Numerical results show that the proposed denoising model outperforms the state-of-the-art algorithms in terms of peak-signal-to-noise ratio (PSNR), feature similarity (FSIM), and normalized mean square error (NMSE).