- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
This paper aims to construct and analyze the conforming and nonconforming virtual element methods for a class of fourth order nonlinear Schrödinger equations with trapped term. We mainly consider three types of virtual elements, including $H^2$ conforming virtual element, $C^0$ nonconforming virtual element and Morley-type nonconforming virtual element. The fully discrete schemes are constructed by virtue of virtual element methods in space and modified Crank-Nicolson method in time. We prove the mass and energy conservation, the boundedness and the unique solvability of the fully discrete schemes. After introducing a new type of the Ritz projection, the optimal and unconditional error estimates for the fully discrete schemes are presented and proved. Finally, two numerical examples are investigated to confirm our theoretical analysis.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2209-m2021-0038}, url = {http://global-sci.org/intro/article_detail/jcm/22889.html} }This paper aims to construct and analyze the conforming and nonconforming virtual element methods for a class of fourth order nonlinear Schrödinger equations with trapped term. We mainly consider three types of virtual elements, including $H^2$ conforming virtual element, $C^0$ nonconforming virtual element and Morley-type nonconforming virtual element. The fully discrete schemes are constructed by virtue of virtual element methods in space and modified Crank-Nicolson method in time. We prove the mass and energy conservation, the boundedness and the unique solvability of the fully discrete schemes. After introducing a new type of the Ritz projection, the optimal and unconditional error estimates for the fully discrete schemes are presented and proved. Finally, two numerical examples are investigated to confirm our theoretical analysis.