- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, we develop and analyze a finite difference method for linear second-order stochastic boundary-value problems (SBVPs) driven by additive white noises. First we regularize the noise by the Wong-Zakai approximation and introduce a sequence of linear second-order SBVPs. We prove that the solution of the SBVP with regularized noise converges to the solution of the original SBVP with convergence order $\mathcal{O}(h)$ in the mean-square sense. To obtain a numerical solution, we apply the finite difference method to the stochastic BVP whose noise is piecewise constant approximation of the original noise. The approximate SBVP with regularized noise is shown to have better regularity than the original problem, which facilitates the convergence proof for the proposed scheme. Convergence analysis is presented based on the standard finite difference method for deterministic problems. More specifically, we prove that the finite difference solution converges at $\mathcal{O}(h)$ in the mean-square sense, when the second-order accurate three-point formulas to approximate the first and second derivatives are used. Finally, we present several numerical examples to validate the efficiency and accuracy of the proposed scheme.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2205-m2021-0346}, url = {http://global-sci.org/intro/article_detail/jcm/22888.html} }In this paper, we develop and analyze a finite difference method for linear second-order stochastic boundary-value problems (SBVPs) driven by additive white noises. First we regularize the noise by the Wong-Zakai approximation and introduce a sequence of linear second-order SBVPs. We prove that the solution of the SBVP with regularized noise converges to the solution of the original SBVP with convergence order $\mathcal{O}(h)$ in the mean-square sense. To obtain a numerical solution, we apply the finite difference method to the stochastic BVP whose noise is piecewise constant approximation of the original noise. The approximate SBVP with regularized noise is shown to have better regularity than the original problem, which facilitates the convergence proof for the proposed scheme. Convergence analysis is presented based on the standard finite difference method for deterministic problems. More specifically, we prove that the finite difference solution converges at $\mathcal{O}(h)$ in the mean-square sense, when the second-order accurate three-point formulas to approximate the first and second derivatives are used. Finally, we present several numerical examples to validate the efficiency and accuracy of the proposed scheme.