- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, we develop an active set identification technique. By means of the active set technique, we present an active set adaptive monotone projected Barzilai-Borwein method (ASAMPBB) for solving nonnegative matrix factorization (NMF) based on the alternating nonnegative least squares framework, in which the Barzilai-Borwein (BB) step sizes can be adaptively picked to get meaningful convergence rate improvements. To get optimal step size, we take into account of the curvature information. In addition, the larger step size technique is exploited to accelerate convergence of the proposed method. The global convergence of the proposed method is analysed under mild assumption. Finally, the results of the numerical experiments on both synthetic and real-world datasets show that the proposed method is effective.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2201-m2019-0145}, url = {http://global-sci.org/intro/article_detail/jcm/21677.html} }In this paper, we develop an active set identification technique. By means of the active set technique, we present an active set adaptive monotone projected Barzilai-Borwein method (ASAMPBB) for solving nonnegative matrix factorization (NMF) based on the alternating nonnegative least squares framework, in which the Barzilai-Borwein (BB) step sizes can be adaptively picked to get meaningful convergence rate improvements. To get optimal step size, we take into account of the curvature information. In addition, the larger step size technique is exploited to accelerate convergence of the proposed method. The global convergence of the proposed method is analysed under mild assumption. Finally, the results of the numerical experiments on both synthetic and real-world datasets show that the proposed method is effective.