- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Two-phase image segmentation is a fundamental task to partition an image into foreground and background. In this paper, two types of nonconvex and nonsmooth regularization models are proposed for basic two-phase segmentation. They extend the convex regularization on the characteristic function on the image domain to the nonconvex case, which are able to better obtain piecewise constant regions with neat boundaries. By analyzing the proposed non-Lipschitz model, we combine the proximal alternating minimization framework with support shrinkage and linearization strategies to design our algorithm. This leads to two alternating strongly convex subproblems which can be easily solved. Similarly, we present an algorithm without support shrinkage operation for the nonconvex Lipschitz case. Using the Kurdyka-Łojasiewicz property of the objective function, we prove that the limit point of the generated sequence is a critical point of the original nonconvex nonsmooth problem. Numerical experiments and comparisons illustrate the effectiveness of our method in two-phase image segmentation.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2108-m2021-0057}, url = {http://global-sci.org/intro/article_detail/jcm/21407.html} }Two-phase image segmentation is a fundamental task to partition an image into foreground and background. In this paper, two types of nonconvex and nonsmooth regularization models are proposed for basic two-phase segmentation. They extend the convex regularization on the characteristic function on the image domain to the nonconvex case, which are able to better obtain piecewise constant regions with neat boundaries. By analyzing the proposed non-Lipschitz model, we combine the proximal alternating minimization framework with support shrinkage and linearization strategies to design our algorithm. This leads to two alternating strongly convex subproblems which can be easily solved. Similarly, we present an algorithm without support shrinkage operation for the nonconvex Lipschitz case. Using the Kurdyka-Łojasiewicz property of the objective function, we prove that the limit point of the generated sequence is a critical point of the original nonconvex nonsmooth problem. Numerical experiments and comparisons illustrate the effectiveness of our method in two-phase image segmentation.