- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, we present a method for generating Bézier surfaces from the boundary information based on a general second order functional and a third order functional associated with the triharmonic equation. By solving simple linear equations, the internal control points of the resulting Bézier surface can be obtained as linear combinations of the given boundary control points. This is a generalization of previous works on Plateau-Bézier problem, harmonic, biharmonic and quasi-harmonic Bézier surfaces. Some representative examples show the effectiveness of the presented method.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2106-m2021-0050}, url = {http://global-sci.org/intro/article_detail/jcm/21405.html} }In this paper, we present a method for generating Bézier surfaces from the boundary information based on a general second order functional and a third order functional associated with the triharmonic equation. By solving simple linear equations, the internal control points of the resulting Bézier surface can be obtained as linear combinations of the given boundary control points. This is a generalization of previous works on Plateau-Bézier problem, harmonic, biharmonic and quasi-harmonic Bézier surfaces. Some representative examples show the effectiveness of the presented method.