- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
This article aims to study the unconditional superconvergent behavior of nonconforming quadrilateral quasi-Wilson element for nonlinear Benjamin Bona Mahoney (BBM) equation. For the generalized rectangular meshes including rectangular mesh, deformed rectangular mesh and piecewise deformed rectangular mesh, by use of the special character of this element, that is, the conforming part (bilinear element) has high accuracy estimates on the generalized rectangular meshes and the consistency error can reach order $O(h^2)$, one order higher than its interpolation error, the superconvergent estimates with respect to mesh size $h$ are obtained in the broken $H^1$-norm for the semi-/ fully-discrete schemes. A striking ingredient is that the restrictions between mesh size $h$ and time step $\tau$ required in the previous works are removed. Finally, some numerical results are provided to confirm the theoretical analysis.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2104-m2020-0233}, url = {http://global-sci.org/intro/article_detail/jcm/21171.html} }This article aims to study the unconditional superconvergent behavior of nonconforming quadrilateral quasi-Wilson element for nonlinear Benjamin Bona Mahoney (BBM) equation. For the generalized rectangular meshes including rectangular mesh, deformed rectangular mesh and piecewise deformed rectangular mesh, by use of the special character of this element, that is, the conforming part (bilinear element) has high accuracy estimates on the generalized rectangular meshes and the consistency error can reach order $O(h^2)$, one order higher than its interpolation error, the superconvergent estimates with respect to mesh size $h$ are obtained in the broken $H^1$-norm for the semi-/ fully-discrete schemes. A striking ingredient is that the restrictions between mesh size $h$ and time step $\tau$ required in the previous works are removed. Finally, some numerical results are provided to confirm the theoretical analysis.