- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
A solution to the linear Boltzmann equation satisfies an energy bound, which reflects a natural fact: The energy of particles in a finite volume is bounded in time by the energy of particles initially occupying the volume augmented by the energy transported into the volume by particles entering the volume over time. In this paper, we present boundary conditions (BCs) for the spherical harmonic $(P_N)$ approximation, which ensure that this fundamental energy bound is satisfied by the $P_N$ approximation. Our BCs are compatible with the characteristic waves of $P_N$ equations and determine the incoming waves uniquely. Both, energy bound and compatibility, are shown on abstract formulations of $P_N$ equations and BCs to isolate the necessary structures and properties. The BCs are derived from a Marshak type formulation of BC and base on a non-classical even/odd-classification of spherical harmonic functions and a stabilization step, which is similar to the truncation of the series expansion in the $P_N$ method. We show that summation by parts (SBP) finite difference on staggered grids in space and the method of simultaneous approximation terms (SAT) allows to maintain the energy bound also on the semi-discrete level.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2104-m2019-0231}, url = {http://global-sci.org/intro/article_detail/jcm/20844.html} }A solution to the linear Boltzmann equation satisfies an energy bound, which reflects a natural fact: The energy of particles in a finite volume is bounded in time by the energy of particles initially occupying the volume augmented by the energy transported into the volume by particles entering the volume over time. In this paper, we present boundary conditions (BCs) for the spherical harmonic $(P_N)$ approximation, which ensure that this fundamental energy bound is satisfied by the $P_N$ approximation. Our BCs are compatible with the characteristic waves of $P_N$ equations and determine the incoming waves uniquely. Both, energy bound and compatibility, are shown on abstract formulations of $P_N$ equations and BCs to isolate the necessary structures and properties. The BCs are derived from a Marshak type formulation of BC and base on a non-classical even/odd-classification of spherical harmonic functions and a stabilization step, which is similar to the truncation of the series expansion in the $P_N$ method. We show that summation by parts (SBP) finite difference on staggered grids in space and the method of simultaneous approximation terms (SAT) allows to maintain the energy bound also on the semi-discrete level.