- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Based on the primal mixed variational formulation, a stabilized nonconforming mixed finite element method is proposed for the linear elasticity on rectangular and cubic meshes. Two kinds of penalty terms are introduced in the stabilized mixed formulation, which are the jump penalty term for the displacement and the divergence penalty term for the stress. We use the classical nonconforming rectangular and cubic elements for the displacement and the discontinuous piecewise polynomial space for the stress, where the discrete space for stress are carefully chosen to guarantee the well-posedness of discrete formulation. The stabilized mixed method is locking-free. The optimal convergence order is derived in the $L^2$-norm for stress and in the broken $H^1$-norm and $L^2$-norm for displacement. A numerical test is carried out to verify the optimal convergence of the stabilized method.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2103-m2020-0143}, url = {http://global-sci.org/intro/article_detail/jcm/20839.html} }Based on the primal mixed variational formulation, a stabilized nonconforming mixed finite element method is proposed for the linear elasticity on rectangular and cubic meshes. Two kinds of penalty terms are introduced in the stabilized mixed formulation, which are the jump penalty term for the displacement and the divergence penalty term for the stress. We use the classical nonconforming rectangular and cubic elements for the displacement and the discontinuous piecewise polynomial space for the stress, where the discrete space for stress are carefully chosen to guarantee the well-posedness of discrete formulation. The stabilized mixed method is locking-free. The optimal convergence order is derived in the $L^2$-norm for stress and in the broken $H^1$-norm and $L^2$-norm for displacement. A numerical test is carried out to verify the optimal convergence of the stabilized method.