- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this article, we consider the primal-dual path-following method and the trust-region updating strategy for the standard linear programming problem. For the rank-deficient problem with the small noisy data, we also give the preprocessing method based on the QR decomposition with column pivoting. Then, we prove the global convergence of the new method when the initial point is strictly primal-dual feasible. Finally, for some rank-deficient problems with or without the small noisy data from the NETLIB collection, we compare it with other two popular interior-point methods, i.e. the subroutine pathfollow.m and the built-in subroutine linprog.m of the MATLAB environment. Numerical results show that the new method is more robust than the other two methods for the rank-deficient problem with the small noise data.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2101-m2020-0173}, url = {http://global-sci.org/intro/article_detail/jcm/20546.html} }In this article, we consider the primal-dual path-following method and the trust-region updating strategy for the standard linear programming problem. For the rank-deficient problem with the small noisy data, we also give the preprocessing method based on the QR decomposition with column pivoting. Then, we prove the global convergence of the new method when the initial point is strictly primal-dual feasible. Finally, for some rank-deficient problems with or without the small noisy data from the NETLIB collection, we compare it with other two popular interior-point methods, i.e. the subroutine pathfollow.m and the built-in subroutine linprog.m of the MATLAB environment. Numerical results show that the new method is more robust than the other two methods for the rank-deficient problem with the small noise data.