- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
To reduce the computational cost, we propose a regularizing modified Levenberg-Marquardt scheme via multiscale Galerkin method for solving nonlinear ill-posed problems. Convergence results for the regularizing modified Levenberg-Marquardt scheme for the solution of nonlinear ill-posed problems have been proved. Based on these results, we propose a modified heuristic parameter choice rule to terminate the regularizing modified Levenberg-Marquardt scheme. By imposing certain conditions on the noise, we derive optimal convergence rates on the approximate solution under special source conditions. Numerical results are presented to illustrate the performance of the regularizing modified Levenberg-Marquardt scheme under the modified heuristic parameter choice.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2101-m2020-0218}, url = {http://global-sci.org/intro/article_detail/jcm/20543.html} }To reduce the computational cost, we propose a regularizing modified Levenberg-Marquardt scheme via multiscale Galerkin method for solving nonlinear ill-posed problems. Convergence results for the regularizing modified Levenberg-Marquardt scheme for the solution of nonlinear ill-posed problems have been proved. Based on these results, we propose a modified heuristic parameter choice rule to terminate the regularizing modified Levenberg-Marquardt scheme. By imposing certain conditions on the noise, we derive optimal convergence rates on the approximate solution under special source conditions. Numerical results are presented to illustrate the performance of the regularizing modified Levenberg-Marquardt scheme under the modified heuristic parameter choice.