- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
We study from a numerical point of view a multidimensional problem involving a viscoelastic body with two porous structures. The mechanical problem leads to a linear system of three coupled hyperbolic partial differential equations. Its corresponding variational formulation gives rise to three coupled parabolic linear equations. An existence and uniqueness result, and an energy decay property, are recalled. Then, fully discrete approximations are introduced using the finite element method and the implicit Euler scheme. A discrete stability property and a priori error estimates are proved, from which the linear convergence of the algorithm is derived under suitable additional regularity conditions. Finally, some numerical simulations are performed in one and two dimensions to show the accuracy of the approximation and the behaviour of the solution.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2010-m2020-0043}, url = {http://global-sci.org/intro/article_detail/jcm/20244.html} }We study from a numerical point of view a multidimensional problem involving a viscoelastic body with two porous structures. The mechanical problem leads to a linear system of three coupled hyperbolic partial differential equations. Its corresponding variational formulation gives rise to three coupled parabolic linear equations. An existence and uniqueness result, and an energy decay property, are recalled. Then, fully discrete approximations are introduced using the finite element method and the implicit Euler scheme. A discrete stability property and a priori error estimates are proved, from which the linear convergence of the algorithm is derived under suitable additional regularity conditions. Finally, some numerical simulations are performed in one and two dimensions to show the accuracy of the approximation and the behaviour of the solution.