- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, we study the finite element approximation for nonlinear thermal equation. Because the nonlinearity of the equation, our theoretical analysis is based on the error of temporal and spatial discretization. We consider a fully discrete second order backward difference formula based on a finite element method to approximate the temperature and electric potential, and establish optimal $L^2$ error estimates for the fully discrete finite element solution without any restriction on the time-step size. The discrete solution is bounded in infinite norm. Finally, several numerical examples are presented to demonstrate the accuracy and efficiency of the proposed method.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2010-m2020-0145}, url = {http://global-sci.org/intro/article_detail/jcm/20241.html} }In this paper, we study the finite element approximation for nonlinear thermal equation. Because the nonlinearity of the equation, our theoretical analysis is based on the error of temporal and spatial discretization. We consider a fully discrete second order backward difference formula based on a finite element method to approximate the temperature and electric potential, and establish optimal $L^2$ error estimates for the fully discrete finite element solution without any restriction on the time-step size. The discrete solution is bounded in infinite norm. Finally, several numerical examples are presented to demonstrate the accuracy and efficiency of the proposed method.