- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
For the five-point discrete formulae of directional derivatives in the finite point method, overcoming the challenge resulted from scattered point sets and making full use of the explicit expressions and accuracy of the formulae, this paper obtains a number of theoretical results: (1) a concise expression with definite meaning of the complicated directional difference coefficient matrix is presented, which characterizes the correlation between coefficients and the connection between coefficients and scattered geometric characteristics; (2) various expressions of the discriminant function for the solvability of numerical differentials along with the estimation of its lower bound are given, which are the bases for selecting neighboring points and making analysis; (3) the estimations of combinatorial elements and of each element in the directional difference coefficient matrix are put out, which exclude the existence of singularity. Finally, the theoretical analysis results are verified by numerical calculations.
The results of this paper have strong regularity, which lay the foundation for further research on the finite point method for solving partial differential equations.
For the five-point discrete formulae of directional derivatives in the finite point method, overcoming the challenge resulted from scattered point sets and making full use of the explicit expressions and accuracy of the formulae, this paper obtains a number of theoretical results: (1) a concise expression with definite meaning of the complicated directional difference coefficient matrix is presented, which characterizes the correlation between coefficients and the connection between coefficients and scattered geometric characteristics; (2) various expressions of the discriminant function for the solvability of numerical differentials along with the estimation of its lower bound are given, which are the bases for selecting neighboring points and making analysis; (3) the estimations of combinatorial elements and of each element in the directional difference coefficient matrix are put out, which exclude the existence of singularity. Finally, the theoretical analysis results are verified by numerical calculations.
The results of this paper have strong regularity, which lay the foundation for further research on the finite point method for solving partial differential equations.