- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Deep ReLU Networks Overcome the Curse of Dimensionality for Generalized Bandlimited Functions
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-39-801,
author = {Montanelli , HadrienYang , Haizhao and Du , Qiang},
title = {Deep ReLU Networks Overcome the Curse of Dimensionality for Generalized Bandlimited Functions},
journal = {Journal of Computational Mathematics},
year = {2021},
volume = {39},
number = {6},
pages = {801--815},
abstract = {
We prove a theorem concerning the approximation of generalized bandlimited multivariate functions by deep ReLU networks for which the curse of the dimensionality is overcome. Our theorem is based on a result by Maurey and on the ability of deep ReLU networks to approximate Chebyshev polynomials and analytic functions efficiently.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2007-m2019-0239}, url = {http://global-sci.org/intro/article_detail/jcm/19912.html} }
TY - JOUR
T1 - Deep ReLU Networks Overcome the Curse of Dimensionality for Generalized Bandlimited Functions
AU - Montanelli , Hadrien
AU - Yang , Haizhao
AU - Du , Qiang
JO - Journal of Computational Mathematics
VL - 6
SP - 801
EP - 815
PY - 2021
DA - 2021/10
SN - 39
DO - http://doi.org/10.4208/jcm.2007-m2019-0239
UR - https://global-sci.org/intro/article_detail/jcm/19912.html
KW - Machine learning, Deep ReLU networks, Curse of dimensionality, Approximation theory, Bandlimited functions, Chebyshev polynomials.
AB -
We prove a theorem concerning the approximation of generalized bandlimited multivariate functions by deep ReLU networks for which the curse of the dimensionality is overcome. Our theorem is based on a result by Maurey and on the ability of deep ReLU networks to approximate Chebyshev polynomials and analytic functions efficiently.
Montanelli , HadrienYang , Haizhao and Du , Qiang. (2021). Deep ReLU Networks Overcome the Curse of Dimensionality for Generalized Bandlimited Functions.
Journal of Computational Mathematics. 39 (6).
801-815.
doi:10.4208/jcm.2007-m2019-0239
Copy to clipboard