- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Iterative ILU factorizations are constructed, analyzed and applied as preconditioners to solve both linear systems and eigenproblems. The computational kernels of these novel Iterative ILU factorizations are sparse matrix-matrix multiplications, which are easy and efficient to implement on both serial and parallel computer architectures and can take full advantage of existing matrix-matrix multiplication codes. We also introduce level-based and threshold-based algorithms in order to enhance the accuracy of the proposed Iterative ILU factorizations. The results of several numerical experiments illustrate the efficiency of the proposed preconditioners to solve both linear systems and eigenvalue problems.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2009-m2020-0138}, url = {http://global-sci.org/intro/article_detail/jcm/19262.html} }Iterative ILU factorizations are constructed, analyzed and applied as preconditioners to solve both linear systems and eigenproblems. The computational kernels of these novel Iterative ILU factorizations are sparse matrix-matrix multiplications, which are easy and efficient to implement on both serial and parallel computer architectures and can take full advantage of existing matrix-matrix multiplication codes. We also introduce level-based and threshold-based algorithms in order to enhance the accuracy of the proposed Iterative ILU factorizations. The results of several numerical experiments illustrate the efficiency of the proposed preconditioners to solve both linear systems and eigenvalue problems.