- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
This paper develops and analyzes a fully discrete finite element method for a class of semilinear stochastic partial differential equations (SPDEs) with multiplicative noise. The nonlinearity in the diffusion term of the SPDEs is assumed to be globally Lipschitz and the nonlinearity in the drift term is only assumed to satisfy a one-sided Lipschitz condition. These assumptions are the same ones as used in [18] where numerical methods for general nonlinear stochastic ordinary differential equations (SODEs) under "minimum assumptions" were studied. As a result, the semilinear SPDEs considered in this paper are a direct generalization of the SODEs considered in [18]. There are several difficulties which need to be overcome for this generalization. First, obviously the spatial discretization, which does not appear in the SODE case, adds an extra layer of difficulty. It turns out a spatial discretization must be designed to guarantee certain properties for the numerical scheme and its stiffness matrix. In this paper we use a finite element interpolation technique to discretize the nonlinear drift term. Second, in order to prove the strong convergence of the proposed fully discrete finite element method, stability estimates for higher order moments of the $H^1$-seminorm of the numerical solution must be established, which are difficult and delicate. A judicious combination of the properties of the drift and diffusion terms and a nontrivial technique borrowed from [28] is used in this paper to achieve the goal. Finally, stability estimates for the second and higher order moments of the $L^2$-norm of the numerical solution are also difficult to obtain due to the fact that the mass matrix may not be diagonally dominant. This is done by utilizing the interpolation theory and the higher moment estimates for the $H^1$-seminorm of the numerical solution. After overcoming these difficulties, it is proved that the proposed fully discrete finite element method is convergent in strong norms with nearly optimal rates of convergence. Numerical experiment results are also presented to validate the theoretical results and to demonstrate the efficiency of the proposed numerical method.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2003-m2019-0250}, url = {http://global-sci.org/intro/article_detail/jcm/19156.html} }This paper develops and analyzes a fully discrete finite element method for a class of semilinear stochastic partial differential equations (SPDEs) with multiplicative noise. The nonlinearity in the diffusion term of the SPDEs is assumed to be globally Lipschitz and the nonlinearity in the drift term is only assumed to satisfy a one-sided Lipschitz condition. These assumptions are the same ones as used in [18] where numerical methods for general nonlinear stochastic ordinary differential equations (SODEs) under "minimum assumptions" were studied. As a result, the semilinear SPDEs considered in this paper are a direct generalization of the SODEs considered in [18]. There are several difficulties which need to be overcome for this generalization. First, obviously the spatial discretization, which does not appear in the SODE case, adds an extra layer of difficulty. It turns out a spatial discretization must be designed to guarantee certain properties for the numerical scheme and its stiffness matrix. In this paper we use a finite element interpolation technique to discretize the nonlinear drift term. Second, in order to prove the strong convergence of the proposed fully discrete finite element method, stability estimates for higher order moments of the $H^1$-seminorm of the numerical solution must be established, which are difficult and delicate. A judicious combination of the properties of the drift and diffusion terms and a nontrivial technique borrowed from [28] is used in this paper to achieve the goal. Finally, stability estimates for the second and higher order moments of the $L^2$-norm of the numerical solution are also difficult to obtain due to the fact that the mass matrix may not be diagonally dominant. This is done by utilizing the interpolation theory and the higher moment estimates for the $H^1$-seminorm of the numerical solution. After overcoming these difficulties, it is proved that the proposed fully discrete finite element method is convergent in strong norms with nearly optimal rates of convergence. Numerical experiment results are also presented to validate the theoretical results and to demonstrate the efficiency of the proposed numerical method.