- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper we provide a characterisation of rational developable surfaces in terms of the blossoms of the bounding curves and three rational functions $Λ, M, ν.$ Properties of developable surfaces are revised in this framework. In particular, a closed algebraic formula for the edge of regression of the surface is obtained in terms of the functions $Λ, M, ν,$ which are closely related to the ones that appear in the standard decomposition of the derivative of the parametrisation of one of the bounding curves in terms of the director vector of the rulings and its derivative. It is also shown that all rational developable surfaces can be described as the set of developable surfaces which can be constructed with a constant $Λ, M, ν .$ The results are readily extended to rational spline developable surfaces.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2003-m2019-0226}, url = {http://global-sci.org/intro/article_detail/jcm/19150.html} }In this paper we provide a characterisation of rational developable surfaces in terms of the blossoms of the bounding curves and three rational functions $Λ, M, ν.$ Properties of developable surfaces are revised in this framework. In particular, a closed algebraic formula for the edge of regression of the surface is obtained in terms of the functions $Λ, M, ν,$ which are closely related to the ones that appear in the standard decomposition of the derivative of the parametrisation of one of the bounding curves in terms of the director vector of the rulings and its derivative. It is also shown that all rational developable surfaces can be described as the set of developable surfaces which can be constructed with a constant $Λ, M, ν .$ The results are readily extended to rational spline developable surfaces.