- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, the monolithic multigrid method is investigated for reduced magnetohydrodynamic equations. We propose a diagonal Braess-Sarazin smoother for the finite element discrete system and prove the uniform convergence of the MMG method with respect to mesh sizes. A multigrid-preconditioned FGMRES method is proposed to solve the magnetohydrodynamic equations. It turns out to be robust for relatively large physical parameters. By extensive numerical experiments, we demonstrate the optimality of the monolithic multigrid method with respect to the number of degrees of freedom.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2006-m2020-0071}, url = {http://global-sci.org/intro/article_detail/jcm/18741.html} }In this paper, the monolithic multigrid method is investigated for reduced magnetohydrodynamic equations. We propose a diagonal Braess-Sarazin smoother for the finite element discrete system and prove the uniform convergence of the MMG method with respect to mesh sizes. A multigrid-preconditioned FGMRES method is proposed to solve the magnetohydrodynamic equations. It turns out to be robust for relatively large physical parameters. By extensive numerical experiments, we demonstrate the optimality of the monolithic multigrid method with respect to the number of degrees of freedom.