- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
This work describes an accurate and effective method for numerically solving a class of nonlinear fractional differential equations. To start the method, we equivalently convert these types of differential equations to nonlinear fractional Volterra integral equations of the second kind by integrating from both sides of them. Afterward, the solution of the mentioned Volterra integral equations can be estimated using the collocation method based on locally supported Gaussian functions. The local Gaussian-collocation scheme estimates the unknown function utilizing a small set of data instead of all points in the solution domain, so the proposed method uses much less computer memory and volume computing in comparison with global cases. We apply the composite non-uniform Gauss-Legendre quadrature formula to estimate singular-fractional integrals in the method. Because of the fact that the proposed scheme requires no cell structures on the domain, it is a meshless method. Furthermore, we obtain the error analysis of the proposed method and demonstrate that the convergence rate of the approach is arbitrarily high. Illustrative examples clearly show the reliability and efficiency of the new technique and confirm the theoretical error estimates.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1912-m2019-0072}, url = {http://global-sci.org/intro/article_detail/jcm/18374.html} }This work describes an accurate and effective method for numerically solving a class of nonlinear fractional differential equations. To start the method, we equivalently convert these types of differential equations to nonlinear fractional Volterra integral equations of the second kind by integrating from both sides of them. Afterward, the solution of the mentioned Volterra integral equations can be estimated using the collocation method based on locally supported Gaussian functions. The local Gaussian-collocation scheme estimates the unknown function utilizing a small set of data instead of all points in the solution domain, so the proposed method uses much less computer memory and volume computing in comparison with global cases. We apply the composite non-uniform Gauss-Legendre quadrature formula to estimate singular-fractional integrals in the method. Because of the fact that the proposed scheme requires no cell structures on the domain, it is a meshless method. Furthermore, we obtain the error analysis of the proposed method and demonstrate that the convergence rate of the approach is arbitrarily high. Illustrative examples clearly show the reliability and efficiency of the new technique and confirm the theoretical error estimates.