- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
We address the evaluation of highly oscillatory integrals, with power-law and logarithmic singularities. Such problems arise in numerical methods in engineering. Notably, the evaluation of oscillatory integrals dominates the run-time for wave-enriched boundary integral formulations for wave scattering, and many of these exhibit singularities. We show that the asymptotic behaviour of the integral depends on the integrand and its derivatives at the singular point of the integrand, the stationary points and the endpoints of the integral. A truncated asymptotic expansion achieves an error that decays faster for increasing frequency. Based on the asymptotic analysis, a Filon-type method is constructed to approximate the integral. Unlike an asymptotic expansion, the Filon method achieves high accuracy for both small and large frequency. Complex-valued quadrature involves interpolation at the zeros of polynomials orthogonal to a complex weight function. Numerical results indicate that the complex-valued Gaussian quadrature achieves the highest accuracy when the three methods are compared. However, while it achieves higher accuracy for the same number of function evaluations, it requires significant additional cost of computation of orthogonal polynomials and their zeros.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1911-m2019-0044}, url = {http://global-sci.org/intro/article_detail/jcm/18373.html} }We address the evaluation of highly oscillatory integrals, with power-law and logarithmic singularities. Such problems arise in numerical methods in engineering. Notably, the evaluation of oscillatory integrals dominates the run-time for wave-enriched boundary integral formulations for wave scattering, and many of these exhibit singularities. We show that the asymptotic behaviour of the integral depends on the integrand and its derivatives at the singular point of the integrand, the stationary points and the endpoints of the integral. A truncated asymptotic expansion achieves an error that decays faster for increasing frequency. Based on the asymptotic analysis, a Filon-type method is constructed to approximate the integral. Unlike an asymptotic expansion, the Filon method achieves high accuracy for both small and large frequency. Complex-valued quadrature involves interpolation at the zeros of polynomials orthogonal to a complex weight function. Numerical results indicate that the complex-valued Gaussian quadrature achieves the highest accuracy when the three methods are compared. However, while it achieves higher accuracy for the same number of function evaluations, it requires significant additional cost of computation of orthogonal polynomials and their zeros.