- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
We compute and visualize solutions to the Optimal Transportation (OT) problem for a wide class of cost functions. The standard linear programming (LP) discretization of the continuous problem becomes intractable for moderate grid sizes. A grid refinement method results in a linear cost algorithm. Weak convergence of solutions is established and barycentric projection of transference plans is used to improve the accuracy of solutions. Optimal maps between nonconvex domains, partial OT free boundaries, and high accuracy barycenters are presented.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1907-m2017-0224}, url = {http://global-sci.org/intro/article_detail/jcm/16974.html} }We compute and visualize solutions to the Optimal Transportation (OT) problem for a wide class of cost functions. The standard linear programming (LP) discretization of the continuous problem becomes intractable for moderate grid sizes. A grid refinement method results in a linear cost algorithm. Weak convergence of solutions is established and barycentric projection of transference plans is used to improve the accuracy of solutions. Optimal maps between nonconvex domains, partial OT free boundaries, and high accuracy barycenters are presented.