- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
This paper studies the two-stage fourth-order accurate time discretization [J.Q. Li and Z.F. Du, SIAM J. Sci. Comput., 38 (2016)] and its application to the special relativistic hydrodynamical equations. Our analysis reveals that the new two-stage fourth-order accurate time discretizations can be proposed. With the aid of the direct Eulerian GRP (generalized Riemann problem) methods and the analytical resolution of the local "quasi 1D" GRP, the two-stage fourth-order accurate time discretizations are successfully implemented for the 1D and 2D special relativistic hydrodynamical equations. Several numerical experiments demonstrate the performance and accuracy as well as robustness of our schemes.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1905-m2018-0020}, url = {http://global-sci.org/intro/article_detail/jcm/16669.html} }This paper studies the two-stage fourth-order accurate time discretization [J.Q. Li and Z.F. Du, SIAM J. Sci. Comput., 38 (2016)] and its application to the special relativistic hydrodynamical equations. Our analysis reveals that the new two-stage fourth-order accurate time discretizations can be proposed. With the aid of the direct Eulerian GRP (generalized Riemann problem) methods and the analytical resolution of the local "quasi 1D" GRP, the two-stage fourth-order accurate time discretizations are successfully implemented for the 1D and 2D special relativistic hydrodynamical equations. Several numerical experiments demonstrate the performance and accuracy as well as robustness of our schemes.