- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Order Reduced Methods for Quad-Curl Equations with Navier Type Boundary Conditions
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-38-565,
author = {Zhang , Weifeng and Zhang , Shuo},
title = {Order Reduced Methods for Quad-Curl Equations with Navier Type Boundary Conditions},
journal = {Journal of Computational Mathematics},
year = {2020},
volume = {38},
number = {4},
pages = {565--579},
abstract = {
Quad-curl equations with Navier type boundary conditions are studied in this paper. Stable order reduced formulations equivalent to the model problems are presented, and finite element discretizations are designed. Optimal convergence rates are proved.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1901-m2018-0150}, url = {http://global-sci.org/intro/article_detail/jcm/16463.html} }
TY - JOUR
T1 - Order Reduced Methods for Quad-Curl Equations with Navier Type Boundary Conditions
AU - Zhang , Weifeng
AU - Zhang , Shuo
JO - Journal of Computational Mathematics
VL - 4
SP - 565
EP - 579
PY - 2020
DA - 2020/04
SN - 38
DO - http://doi.org/10.4208/jcm.1901-m2018-0150
UR - https://global-sci.org/intro/article_detail/jcm/16463.html
KW - Quad-curl equation, Order reduced scheme, Regularity analysis, Finite element method.
AB -
Quad-curl equations with Navier type boundary conditions are studied in this paper. Stable order reduced formulations equivalent to the model problems are presented, and finite element discretizations are designed. Optimal convergence rates are proved.
Zhang , Weifeng and Zhang , Shuo. (2020). Order Reduced Methods for Quad-Curl Equations with Navier Type Boundary Conditions.
Journal of Computational Mathematics. 38 (4).
565-579.
doi:10.4208/jcm.1901-m2018-0150
Copy to clipboard